Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Ther Adv Neurol Disord ; 17: 17562864241239108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572394

RESUMEN

Background: Stroke misdiagnosis, associated with poor outcomes, is estimated to occur in 9% of all stroke patients. Objectives: We hypothesized that machine learning (ML) could assist in the diagnosis of ischemic stroke in emergency departments (EDs). Design: The study was conducted and reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines. We performed model development and prospective temporal validation, using data from pre- and post-COVID periods; we also performed a case study on a small cohort of previously misdiagnosed stroke patients. Methods: We used structured and unstructured electronic health records (EHRs) of 56,452 patient encounters from 13 hospitals in Pennsylvania, from September 2003 to January 2021. ML pipelines, including natural language processing, were created using pre-event clinical data and provider notes in the EDs. Results: Using pre-event information, our model's area under the receiver operating characteristics curve (AUROC) ranged from 0.88 to 0.92 with a similar range accuracy (0.87-0.90). Using provider notes, we identified five models that reached a balanced performance in terms of AUROC, sensitivity, and specificity. Model AUROC ranged from 0.93 to 0.99. Model sensitivity and specificity reached 0.90 and 0.99, respectively. Four of the top five performing models were based on the post-COVID provider notes; however, no performance difference between models tested on pre- and post-COVID was observed. Conclusion: This study leveraged pre-event and at-encounter level EHR for stroke prediction. The results indicate that available clinical information can be used for building EHR-based stroke prediction models and ED stroke alert systems.

2.
J Clin Med ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38592138

RESUMEN

(1) Background: Atrial fibrillation (AF) is a major risk factor for stroke and is often underdiagnosed, despite being present in 13-26% of ischemic stroke patients. Recently, a significant number of machine learning (ML)-based models have been proposed for AF prediction and detection for primary and secondary stroke prevention. However, clinical translation of these technological innovations to close the AF care gap has been scant. Herein, we sought to systematically examine studies, employing ML models to predict incident AF in a population without prior AF or to detect paroxysmal AF in stroke cohorts to identify key reasons for the lack of translation into the clinical workflow. We conclude with a set of recommendations to improve the clinical translatability of ML-based models for AF. (2) Methods: MEDLINE, Embase, Web of Science, Clinicaltrials.gov, and ICTRP databases were searched for relevant articles from the inception of the databases up to September 2022 to identify peer-reviewed articles in English that used ML methods to predict incident AF or detect AF after stroke and reported adequate performance metrics. The search yielded 2815 articles, of which 16 studies using ML models to predict incident AF and three studies focusing on ML models to detect AF post-stroke were included. (3) Conclusions: This study highlights that (1) many models utilized only a limited subset of variables available from patients' health records; (2) only 37% of models were externally validated, and stratified analysis was often lacking; (3) 0% of models and 53% of datasets were explicitly made available, limiting reproducibility and transparency; and (4) data pre-processing did not include bias mitigation and sufficient details, leading to potential selection bias. Low generalizability, high false alarm rate, and lack of interpretability were identified as additional factors to be addressed before ML models can be widely deployed in the clinical care setting. Given these limitations, our recommendations to improve the uptake of ML models for better AF outcomes include improving generalizability, reducing potential systemic biases, and investing in external validation studies whilst developing a transparent modeling pipeline to ensure reproducibility.

3.
JAMA Neurol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436973

RESUMEN

Importance: Stroke is a leading cause of death and disability in the US. Accurate and updated measures of stroke burden are needed to guide public health policies. Objective: To present burden estimates of ischemic and hemorrhagic stroke in the US in 2019 and describe trends from 1990 to 2019 by age, sex, and geographic location. Design, Setting, and Participants: An in-depth cross-sectional analysis of the 2019 Global Burden of Disease study was conducted. The setting included the time period of 1990 to 2019 in the US. The study encompassed estimates for various types of strokes, including all strokes, ischemic strokes, intracerebral hemorrhages (ICHs), and subarachnoid hemorrhages (SAHs). The 2019 Global Burden of Disease results were released on October 20, 2020. Exposures: In this study, no particular exposure was specifically targeted. Main Outcomes and Measures: The primary focus of this analysis centered on both overall and age-standardized estimates, stroke incidence, prevalence, mortality, and DALYs per 100 000 individuals. Results: In 2019, the US recorded 7.09 million prevalent strokes (4.07 million women [57.4%]; 3.02 million men [42.6%]), with 5.87 million being ischemic strokes (82.7%). Prevalence also included 0.66 million ICHs and 0.85 million SAHs. Although the absolute numbers of stroke cases, mortality, and DALYs surged from 1990 to 2019, the age-standardized rates either declined or remained steady. Notably, hemorrhagic strokes manifested a substantial increase, especially in mortality, compared with ischemic strokes (incidence of ischemic stroke increased by 13% [95% uncertainty interval (UI), 14.2%-11.9%]; incidence of ICH increased by 39.8% [95% UI, 38.9%-39.7%]; incidence of SAH increased by 50.9% [95% UI, 49.2%-52.6%]). The downturn in stroke mortality plateaued in the recent decade. There was a discernible heterogeneity in stroke burden trends, with older adults (50-74 years) experiencing a decrease in incidence in coastal areas (decreases up to 3.9% in Vermont), in contrast to an uptick observed in younger demographics (15-49 years) in the South and Midwest US (with increases up to 8.4% in Minnesota). Conclusions and Relevance: In this cross-sectional study, the declining age-standardized stroke rates over the past 3 decades suggest progress in managing stroke-related outcomes. However, the increasing absolute burden of stroke, coupled with a notable rise in hemorrhagic stroke, suggests an evolving and substantial public health challenge in the US. Moreover, the significant disparities in stroke burden trends across different age groups and geographic locations underscore the necessity for region- and demography-specific interventions and policies to effectively mitigate the multifaceted and escalating burden of stroke in the country.

4.
Eur Heart J Digit Health ; 5(2): 109-122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505491

RESUMEN

Aims: We developed new machine learning (ML) models and externally validated existing statistical models [ischaemic stroke predictive risk score (iScore) and totalled health risks in vascular events (THRIVE) scores] for predicting the composite of recurrent stroke or all-cause mortality at 90 days and at 3 years after hospitalization for first acute ischaemic stroke (AIS). Methods and results: In adults hospitalized with AIS from January 2005 to November 2016, with follow-up until November 2019, we developed three ML models [random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBOOST)] and externally validated the iScore and THRIVE scores for predicting the composite outcomes after AIS hospitalization, using data from 721 patients and 90 potential predictor variables. At 90 days and 3 years, 11 and 34% of patients, respectively, reached the composite outcome. For the 90-day prediction, the area under the receiver operating characteristic curve (AUC) was 0.779 for RF, 0.771 for SVM, 0.772 for XGBOOST, 0.720 for iScore, and 0.664 for THRIVE. For 3-year prediction, the AUC was 0.743 for RF, 0.777 for SVM, 0.773 for XGBOOST, 0.710 for iScore, and 0.675 for THRIVE. Conclusion: The study provided three ML-based predictive models that achieved good discrimination and clinical usefulness in outcome prediction after AIS and broadened the application of the iScore and THRIVE scoring system for long-term outcome prediction. Our findings warrant comparative analyses of ML and existing statistical method-based risk prediction tools for outcome prediction after AIS in new data sets.

5.
Am J Med ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38387538

RESUMEN

BACKGROUND: A significant proportion of COVID survivors experience lingering and debilitating symptoms following acute COVID-19 infection. According to the national research plan on long COVID, it is a national priority to identify the prevalence of post-COVID conditions and their associated factors. METHOD: We performed a cross-sectional analysis of the Prevention Behavioral Risk Factor Surveillance System (BRFSS) 2022, the largest continuously gathered health survey dataset worldwide by the Centers for Disease Control. After identifying individuals with a positive history of COVID-19, we grouped COVID-19 survivors based on whether they experienced long-term post-COVID conditions. Using survey-specific R packages, we compared the two groups' socio-demographics, comorbidities, and lifestyle-related factors. A logistic regression model was used to identify factors associated with post-COVID conditions. RESULTS: The overall estimated prevalence of long-term post-COVID conditions among COVID survivors was 21.7%. Fatigue (5.7%), dyspnea (4.2%), and anosmia/ageusia (3.8%) were the most frequent symptoms. Based on multivariate logistic regression analysis, female sex, body mass index (BMI)≥25, lack of insurance, history of pulmonary disease, depression, and arthritis, being a former smoker, and sleep duration <7 h/d were associated with higher odds of post-COVID conditions. On the other hand, age >64 y/o, Black race, and annual household income ≥$100k were associated with lower odds of post-COVID conditions. CONCLUSION: Our findings indicate a notable prevalence of post-COVID conditions, particularly among middle-aged women and individuals with comorbidities or adverse lifestyles. This high-risk demographic may require long-term follow-up and support. Further investigations are essential to facilitate the development of specified healthcare and therapeutic strategies for those suffering from post-COVID conditions.

6.
J Stroke Cerebrovasc Dis ; 33(3): 107527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183963

RESUMEN

OBJECTIVE: Cerebral microbleeds (CMBs) can carry an advanced risk for the development and burden of cerebrovascular and cognitive disorders. Large-scale population-based studies are required to identify the at-risk population. METHOD: Ten percent (N = 3,056) of the Geisinger DiscovEHR Initiative Cohort participants who had brain magnetic resonance imaging (MRI) for any indication were randomly selected. Patients with CMBs were compared to an age-, gender-, body mass index-, and hypertension-matched cohort of patients without CMB. The prevalence of comorbidities and use of anticoagulation therapy was investigated in association with CMB presence (binary logistic regression), quantity (ordinal regression), and topography (multinomial regression). RESULTS: Among 3,056 selected participants, 477 (15.6 %) had CMBs in their MRI. Patients with CMBs were older and were more prevalently hypertensive, with ischemic stroke, arrhythmia, dyslipidemia, coronary artery disease, and the use of warfarin. After propensity-score matching, 477 patients with CMBs and 974 without were included for further analyses. Predictors of ≥5 CMBs were ischemic stroke (OR, 1.6; 95 % CI, 1.2 -2.0), peripheral vascular disease (OR, 1.6; 95 % CI, 1.1-2.3), and thrombocytopenia (OR, 1.9; 95 % CI, 1.2-2.9). Ischemic stroke was associated with strictly lobar CMBs more strongly than deep/infra-tentorial CMBs (OR, 2.1; 95 % CI, 1.5-3.1; vs. OR, 1.4; CI, 1.1-1.8). CONCLUSIONS: CMBs were prevalent in our white population. Old age, hypertension, anticoagulant treatment, thrombocytopenia, and a history of vascular diseases including stroke, were associated with CMBs.


Asunto(s)
Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Trombocitopenia , Humanos , Estados Unidos/epidemiología , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/complicaciones , Prevalencia , Población Rural , Accidente Cerebrovascular/epidemiología , Imagen por Resonancia Magnética/métodos , Factores de Riesgo , Hipertensión/epidemiología , Hipertensión/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Trombocitopenia/complicaciones
7.
Sci Rep ; 13(1): 16532, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783691

RESUMEN

With the expansion of electronic health records(EHR)-linked genomic data comes the development of machine learning-enable models. There is a pressing need to develop robust pipelines to evaluate the performance of integrated models and minimize systemic bias. We developed a prediction model of symptomatic Clostridioides difficile infection(CDI) by integrating common EHR-based and genetic risk factors(rs2227306/IL8). Our pipeline includes (1) leveraging phenotyping algorithm to minimize temporal bias, (2) performing simulation studies to determine the predictive power in samples without genetic information, (3) propensity score matching to control for the confoundings, (4) selecting machine learning algorithms to capture complex feature interactions, (5) performing oversampling to address data imbalance, and (6) optimizing models and ensuring proper bias-variance trade-off. We evaluate the performance of prediction models of CDI when including common clinical risk factors and the benefit of incorporating genetic feature(s) into the models. We emphasize the importance of building a robust integrated pipeline to avoid systemic bias and thoroughly evaluating genetic features when integrated into the prediction models in the general population and subgroups.


Asunto(s)
Algoritmos , Infecciones por Clostridium , Humanos , Simulación por Computador , Registros Electrónicos de Salud , Genómica
8.
J Clin Med ; 12(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834922

RESUMEN

Autoimmune conditions have been reported among patients with cysteine-altering NOTCH3 variants and CADASIL. This study aimed to investigate the occurrence of autoimmune illnesses and markers of inflammation in such populations. Cases were identified who had a NOTCH3 cysteine-altering variant from the Geisinger MyCode® Community Health Initiative (MyCode®). We further performed external validation using the UK Biobank cohort. A cohort of 121 individuals with a NOTCH3 cysteine-altering variant from MyCode® was compared to a control group with no non-synonymous variation in NOTCH3 (n = 184). Medical records were evaluated for inflammatory markers and autoimmune conditions, which were grouped by the organ systems involved. A similar analysis was conducted using data from the UK Biobank (n~450,000). An overall increase in inflammatory markers among participants with a NOTCH3 cysteine-altering variant was observed when compared to an age- and sex-matched MyCode® control group (out of participants with laboratory testing: 50.9% versus 26.7%; p = 0.0047; out of total participants: 23.1% versus 10.9%; p = 0.004). Analysis of UK Biobank data indicated any autoimmune diagnosis (1.63 [1.14, 2.09], p= 2.665 × 10-3) and multiple sclerosis (3.42 [1.67, 6.02], p = 9.681 × 10-4) are associated with a NOTCH3 cysteine-altering variant in any domain. Our findings suggest a possible association between NOTCH3 cysteine-altering variants and autoimmune conditions.

9.
J Clin Med ; 12(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37445546

RESUMEN

A transient ischemic attack (TIA), a constellation of temporary neurological symptoms, precedes stroke in one-fifth of patients. Thus far, many clinical models have been introduced to optimize the quality, time to treatment, and cost of acute TIA care, either in an inpatient or outpatient setting. In this article, we aim to review the characteristics and outcomes of outpatient TIA clinics across the globe. In addition, we discussed the main challenges for outpatient management of TIA, including triage and diagnosis, and the system dynamics of the clinics. We further reviewed the potential developments in TIA care, such as telemedicine, predictive analytics, personalized medicine, and advanced imaging.

10.
J Clin Med ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048683

RESUMEN

Introduction: The cut-point for defining the age of young ischemic stroke (IS) is clinically and epidemiologically important, yet it is arbitrary and differs across studies. In this study, we leveraged electronic health records (EHRs) and data science techniques to estimate an optimal cut-point for defining the age of young IS. Methods: Patient-level EHRs were extracted from 13 hospitals in Pennsylvania, and used in two parallel approaches. The first approach included ICD9/10, from IS patients to group comorbidities, and computed similarity scores between every patient pair. We determined the optimal age of young IS by analyzing the trend of patient similarity with respect to their clinical profile for different ages of index IS. The second approach used the IS cohort and control (without IS), and built three sets of machine-learning models-generalized linear regression (GLM), random forest (RF), and XGBoost (XGB)-to classify patients for seventeen age groups. After extracting feature importance from the models, we determined the optimal age of young IS by analyzing the pattern of comorbidity with respect to the age of index IS. Both approaches were completed separately for male and female patients. Results: The stroke cohort contained 7555 ISs, and the control included 31,067 patients. In the first approach, the optimal age of young stroke was 53.7 and 51.0 years in female and male patients, respectively. In the second approach, we created 102 models, based on three algorithms, 17 age brackets, and two sexes. The optimal age was 53 (GLM), 52 (RF), and 54 (XGB) for female, and 52 (GLM and RF) and 53 (RF) for male patients. Different age and sex groups exhibited different comorbidity patterns. Discussion: Using a data-driven approach, we determined the age of young stroke to be 54 years for women and 52 years for men in our mainly rural population, in central Pennsylvania. Future validation studies should include more diverse populations.

11.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36440953

RESUMEN

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Teorema de Bayes , Encéfalo , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/patología , Modelos Neurológicos
12.
J Neurol Sci ; 444: 120497, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455388

RESUMEN

BACKGROUND: SARS-CoV-2 infection may be associated with uncommon complications such as intracerebral hemorrhage (ICH), with a high mortality rate. We compared a series of hospitalized ICH cases infected with SARS-CoV-2 with a non-SARS-CoV-2 infected control group and evaluated if the SARS-CoV-2 infection is a predictor of mortality in ICH patients. METHODS: In a multinational retrospective study, 63 cases of ICH in SARS-CoV-2 infected patients admitted to 13 tertiary centers from the beginning of the pandemic were collected. We compared the clinical and radiological characteristics and in-hospital mortality of these patients with a control group of non-SARS-CoV-2 infected ICH patients of a previous cohort from the country where the majority of cases were recruited. RESULTS: Among 63 ICH patients with SARS-CoV-2 infection, 23 (36.5%) were women. Compared to the non-SARS-CoV-2 infected control group, in SARS-CoV-2 infected patients, ICH occurred at a younger age (61.4 ± 18.1 years versus 66.8 ± 16.2 years, P = 0.044). These patients had higher median ICH scores ([3 (IQR 2-4)] versus [2 (IQR 1-3)], P = 0.025), a more frequent history of diabetes (34% versus 16%, P = 0.007), and lower platelet counts (177.8 ± 77.8 × 109/L versus 240.5 ± 79.3 × 109/L, P < 0.001). The in-hospital mortality was not significantly different between cases and controls (65% versus 62%, P = 0.658) in univariate analysis; however, SARS-CoV-2 infection was significantly associated with in-hospital mortality (aOR = 4.3, 95% CI: 1.28-14.52) in multivariable analysis adjusting for potential confounders. CONCLUSION: Infection with SARS-CoV-2 may be associated with increased odds of in-hospital mortality in ICH patients.


Asunto(s)
COVID-19 , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Masculino , COVID-19/complicaciones , SARS-CoV-2 , Estudios Retrospectivos , Hemorragia Cerebral/complicaciones , Hospitalización
13.
Neurology ; 100(8): e822-e833, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36443016

RESUMEN

BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes. METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input. RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes. DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones
14.
J Neurol Sci ; 442: 120423, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36201961

RESUMEN

BACKGROUND: Stroke screening tools should have good diagnostic performance for early diagnosis and a proper therapeutic plan. This paper describes and compares various diagnostic tools used to identify stroke in emergency departments and prehospital setting. METHODS: The meta-analysis was conducted according to the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines. The PubMed and Scopus databases were searched until December 31, 2021, for studies published on stroke screening tools. These tools' diagnostic performance (sensitivity and specificity) was pooled using a bivariate random-effects model whenever appropriate. RESULTS: Eleven screening tools for stroke were identified in 29 different studies. The various tools had a wide range of sensitivity and specificity in different studies. In the meta-analysis, the Cincinnati Pre-hospital Stroke Scale, Face Arm Speech Test, and Recognition of Stroke in the Emergency Room (ROSIER) had sensitivity (between 83 and 91%) but poor specificity (all below 64%). When comparing all the tools, ROSIER had the highest sensitivity 90.5%. Los Angeles Pre-hospital Stroke Screen performed best in terms of specificity 88.7% but had low sensitivity (73.9%). Melbourne Ambulance Stroke Screen had a balanced performance in terms of sensitivity (86%) and specificity (76%). Sensitivity analysis consisting of only prospective studies showed a similar range of sensitivity and specificity. CONCLUSION: All the stroke screening tools included in the review were comparable, but no clear superior screening tool could be identified. Simple screening tools like Cincinnati prehospital stroke scale (CPSS) have similar performance compared to more complex tools.


Asunto(s)
Servicios Médicos de Urgencia , Accidente Cerebrovascular , Humanos , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/diagnóstico , Servicio de Urgencia en Hospital , Tamizaje Masivo , Sensibilidad y Especificidad
15.
J Clin Med ; 11(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36233417

RESUMEN

Small blood vessels express specific phenotypical and functional characteristics throughout the body. Alterations in the microcirculation contribute to many correlated physiological and pathological events in related organs. Factors such as comorbidities and genetics contribute to the complexity of this topic. Small vessel disease primarily affects end organs that receive significant cardiac output, such as the brain, kidney, and retina. Despite the differences in location, concurrent changes are seen in the micro-vasculature of the brain, retina, and kidneys under pathological conditions due to their common histological, functional, and embryological characteristics. While the cardiovascular basis of pathology in association with the brain, retina, or kidneys has been well documented, this is a simple review that uniquely considers the relationship between all three organs and highlights the prevalence of coexisting end organ injuries in an attempt to elucidate connections between the brain, retina, and kidneys, which has the potential to transform diagnostic and therapeutic approaches.

16.
J Clin Med ; 11(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36294301

RESUMEN

Ischemic stroke (IS), the leading cause of death and disability worldwide, is caused by many modifiable and non-modifiable risk factors. This complex disease is also known for its multiple etiologies with moderate heritability. Polygenic risk scores (PRSs), which have been used to establish a common genetic basis for IS, may contribute to IS risk stratification for disease/outcome prediction and personalized management. Statistical modeling and machine learning algorithms have contributed significantly to this field. For instance, multiple algorithms have been successfully applied to PRS construction and integration of genetic and non-genetic features for outcome prediction to aid in risk stratification for personalized management and prevention measures. PRS derived from variants with effect size estimated based on the summary statistics of a specific subtype shows a stronger association with the matched subtype. The disruption of the extracellular matrix and amyloidosis account for the pathogenesis of cerebral small vessel disease (CSVD). Pathway-specific PRS analyses confirm known and identify novel etiologies related to IS. Some of these specific PRSs (e.g., derived from endothelial cell apoptosis pathway) individually contribute to post-IS mortality and, together with clinical risk factors, better predict post-IS mortality. In this review, we summarize the genetic basis of IS, emphasizing the application of methodologies and algorithms used to construct PRSs and integrate genetics into risk models.

17.
Data Brief ; 44: 108542, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36060820

RESUMEN

With advances in high-throughput image processing technologies and increasing availability of medical mega-data, the growing field of radiomics opened the door for quantitative analysis of medical images for prediction of clinically relevant information. One clinical area in which radiomics have proven useful is stroke neuroimaging, where rapid treatment triage is vital for patient outcomes and automated decision assistance tools have potential for significant clinical impact. Recent research, for example, has applied radiomics features extracted from CT angiography (CTA) images and a machine learning framework to facilitate risk-stratification in acute stroke. We here provide methodological guidelines and radiomics data supporting the referenced article "CT angiographic radiomics signature for risk-stratification in anterior large vessel occlusion stroke." The data were extracted from the stroke center registry at Yale New Haven Hospital between 1/1/2014 and 10/31/2020; and Geisinger Medical Center between 1/1/2016 and 12/31/2019. It includes detailed radiomics features of the anterior circulation territories on admission CTA scans in stroke patients with large vessel occlusion stroke who underwent thrombectomy. We also provide the methodological details of the analysis framework utilized for training, optimization, validation and external testing of the machine learning and feature selection algorithms. With the goal of advancing the feasibility and quality of radiomics-based analyses to improve patient care within and beyond the field of stroke, the provided data and methodological support can serve as a baseline for future studies applying radiomics algorithms to machine-learning frameworks, and allow for analysis and utilization of radiomics features extracted in this study.

18.
J Stroke Cerebrovasc Dis ; 31(11): 106701, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36070633

RESUMEN

BACKGROUND: Long-term mortality in ischemic stroke patients with concomitant COPD has been largely unexplored. This study aimed to compare long-term all-cause mortality in ischemic stroke patients with and without COPD. METHODS: This was a retrospective cohort study of ischemic stroke patients with and without COPD in the Geisinger Neuroscience Ischemic Stroke database to examine all-cause mortality up to 3 years using Kaplan-Meier estimator and Cox proportional hazards model. RESULTS: Of the 6,589 ischemic stroke patients included in this study, 5,525 (83.9%) did not have COPD (group A). Group B (n=1,006) consisted of patients with COPD diagnosis by ICD-9/10-CM codes. COPD patients in Group C (n=233) were diagnosed by spirometry, and in Group D (n=175) by both ICD-9/10-CM codes and spirometry confirmation. The survival probabilities at three years in Group B, C, and D were significantly lower than in Group A. Group B (HR=1.262, 95% CI 1.122-1.42, p<0.001) and group C (HR=1.251, 95% CI 1.01-1.55, p=0.041) had significantly lower hazard of mortality compared to group A. There was no significant difference in survival between COPD subtypes of chronic bronchitis and emphysema. Patients in Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2 stage had an increased mortality hazard compared to the GOLD 1 stage. CONCLUSIONS: While ischemic stroke patients with preexisting COPD have worse long-term survival than those without COPD, the results largely depended on the definition of COPD used. These results suggest that ischemic stroke patients with COPD need more personalized medical care to decrease long-term mortality.


Asunto(s)
Accidente Cerebrovascular Isquémico , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Retrospectivos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Espirometría , Modelos de Riesgos Proporcionales
19.
Front Neurosci ; 16: 994458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090258

RESUMEN

Background purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort. Materials and methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study. Imaging data comprised both Fluid-attenuated inversion recovery (FLAIR) for white matter hyperintensity (WMH) burden estimation and diffusion-weighted imaging (DWI) sequences for the assessment of acute stroke lesions. The initial step featured the systematic evaluation of occurrences of MAL within one and several vascular supply territories. Associations between MAL and important imaging and clinical characteristics were subsequently determined. The interaction effect between single and multiple lesion status and lesion volume was estimated by means of Bayesian hierarchical regression modeling for both stroke severity and functional outcome. Results: We analyzed 2,466 patients (age = 63.4 ± 14.8, 39% women), 49.7% of which presented with a single lesion. Another 37.4% experienced MAL in a single vascular territory, while 12.9% featured lesions in multiple vascular territories. Within most territories, MAL occurred as frequently as single lesions (ratio ∼1:1). Only the brainstem region comprised fewer patients with MAL (ratio 1:4). Patients with MAL presented with a significantly higher lesion volume and acute NIHSS (7.7 vs. 1.7 ml and 4 vs. 3, p FDR < 0.001). In contrast, patients with a single lesion were characterized by a significantly higher WMH burden (6.1 vs. 5.3 ml, p FDR = 0.048). Functional outcome did not differ significantly between patients with single versus multiple lesions. Bayesian analyses suggested that the association between lesion volume and stroke severity between single and multiple lesions was the same in case of anterior circulation stroke. In case of posterior circulation stroke, lesion volume was linked to a higher NIHSS only among those with MAL. Conclusion: Multiple lesions, especially those within one vascular territory, occurred more frequently than previously reported. Overall, multiple lesions were distinctly linked to a higher acute stroke severity, a higher total DWI lesion volume and a lower WMH lesion volume. In posterior circulation stroke, lesion volume was linked to a higher stroke severity in multiple lesions only.

20.
J Stroke Cerebrovasc Dis ; 31(10): 106658, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35973398

RESUMEN

OBJECTIVES: While few studies investigated the incidence of stroke in Iran, no Iranian cohort has estimated the standardized-incidence rate and early fatality of first-ever-stroke subtypes along with associated factors. METHODS: Golestan Cohort Study is a prospective study launched in northeastern Iran in 2004, including 50,045 individuals aged 40-75 at baseline. Age-standardized incidence rate of first-ever-stroke was calculated per 100,000 person-years, according to World Standard Population. The 28-day case fatality was calculated by dividing the number of fatal first-ever-stroke during the first 28 days by total events. Cox proportional hazard models were conducted to assess incidence and fatality risk factors. We used Population Attributable Fractions to estimate the incidence and early fatality proportions reduced by ideal risk factor control. RESULTS: 1,135 first-ever-strokes were observed during 8.6 (median) years follow-up. First-ever-stroke standardized incidence rate was estimated 185.2 (95% CI: 173.2-197.2) per 100,000 person-years. The 28-day case fatality was 44.1% (95% CI: 40.4-48.2). Hypertension and pre-stroke physical activity were the strongest risk factors associated with first-ever-stroke incidence (Hazard ratio: 2.83; 2.47-3.23) and 28-day case fatality (Hazard ratio: 0.59; 0.44-0.78), respectively. Remarkably, opium consumption was strongly associated with hemorrhagic stroke incidence (Hazard ratio: 1.52; 1.04-2.23) and ischemic stroke fatality (Hazard ratio: 1.44; 1.01-2.09). Overall, modifiable risk factors contributed to 83% and 61% of first-ever-stroke incidence and early fatality, respectively. CONCLUSION: Efficient risk factor control can considerably reduce stroke occurrence and fatality in our study. Establishing awareness campaigns and 24-hour stroke units seem necessary for improving the stroke management in this area.


Asunto(s)
Opio , Accidente Cerebrovascular , Estudios de Cohortes , Humanos , Incidencia , Estudios Prospectivos , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...